Programme Information	n & PLOs											
Title of the new programm	e – including any year abroad/ in in	ndustry variants										
BEng/BSc in Computer Science	(and 'with a year in industry' variant)											
Level of qualification												
Please select: Level 6												
Please indicate if the progr	amme is offered with any year abro	oad / in industry variants		Year in Industry Please select Y/N	Yes							
Please mulcate ii the progra	annine is offered with any year abro	oau / III IIIuusti y variaiits	•	Year Abroad Please select Y/N	No							
Department(s):												
Where more than one depa	rtment is involved, indicate the lead	d department										
Lead Department Comp	uter Science											
Other contributing Departments:												
Programme Leader												

Dr Chris Power

Purpose and learning outcomes of the programme

Statement of purpose for applicants to the programme

The BEng/BSc in Computer Science produces multi-skilled, highly competent graduates who are equipped to become leaders in their career field and who understand the implications of their work both for themselves and for society as a whole. Through the programme, you will see two integrated strands of work which help you to develop both your computational thinking and your skills as an engineer. It is the combination of these two areas that will make you attractive to employers, enabling you to make an immediate contribution when you move into employment.

The programme will provide you with a solid foundation in the principles and practices of computer science, including coding, mathematics and basic engineering; with breadth in computer science and related technical disciplines; and with advanced training in focussed areas of your choice. This solid theoretical foundation will allow you to take full advantage of the new technologies and languages which are bound to appear during the course of your career.

You will understand engineering trade-offs that cross disciplines, for example between hardware and software, and you will be able to participate effectively in multidisciplinary teams. You will also develop the skill to contribute professionally to solving complex commercial and industrial engineering problems.

The programme is accredited by both the Institution of Engineering and Technology (IET) and the BCS (the Chartered Institute for IT) – both professional bodies of computing and engineering.

Programme Learning Outcomes

Please provide six to eight statements of what a graduate of the programme can be expected to do.

Taken together, these outcomes should capture the distinctive features of the programme. They should also be outcomes for which progressive achievement through the course of the programme can be articulated, and which will therefore be reflected in the design of the whole programme.

ourse (of the programme can be articulated, and which will therefore be reflected in the design of the whole programme.
PLO	On successful completion of the programme, graduates will be able to:
1	Apply computational thinking to problems they encounter, using skills in problem analysis, representation and abstraction, and in algorithm selection, at different scales in complex situations, and drawing on the foundations of computer science. [Computational thinking]
2	Adapt to new technologies, languages, paradigms, terminologies and models as they become available, being confident to use advanced techniques and tools in their practice. [Adaptability]
3	Design and build computer-based systems to serve the needs of users, with the most appropriate combination of software and hardware, by applying the theory and practice of programming and software engineering, while making effective use of the variety of physical implementations on which that software may be running. [Software and hardware; Users]
4	Engineer solutions to problems in which computation forms a significant part, by using skills from the whole breadth of Computer Science across all parts of the development lifecycle, with deeper skills in chosen areas. [Engineering; Breadth and depth]
5	Make immediate and effective contributions as part of multidisciplinary teams in industry, consultancy or education, by managing workloads, optimising resources and meeting deadlines, using experiences from team projects. [Team working]
6	Communicate key information about complex computational problems and their solutions to specialist audiences and associated stakeholders, in a clear and organised manner [Communication]
7	Operate as responsible Computer Science professionals, by maintaining awareness of key legal and ethical issues, appreciating how computers and technology can impact on society and by continuing to expand and deepen their knowledge through critical engagement with the discipline. [Professionalism]
8	

Programme Learning Outcome for year in industry (where applicable)

For programmes which lead to the title 'with a Year in Industry' – typically involving an additional year – please provide either a) amended versions of some (at least one, but not necessarily all) of the standard PLOs listed above, showing how these are changed and enhanced by the additional year in industry b) an additional PLO, if and only if it is not possible to capture a key ability developed by the year in industry by alteration of the standard PLOs.

PLO2*: Adapt to new technologies, languages, paradigms, terminologies and models as they become available, being confident to use advanced techniques and tools in their practice, **informed by commercial awareness**.

[Adaptability]

PLO3*: Design and build computer-based systems to serve the needs of users and the commercial imperatives of an employer, with the most appropriate combination of software and hardware, by

applying the theory and practice of programming and software engineering, while making effective use of the variety of physical implementations on which that software may be running. [Software and hardware: Users]

PLO5*: Make immediate and effective contributions as part of multidisciplinary teams in industry, consultancy or education, by managing workloads, optimising resources and meeting deadlines, using experiences from team projects and appreciating how their own role relates to others and to the business of an employer or client.

[Team working]

PLO9*: Work to commercial standards by planning, implementing and monitoring their own work in relation to appropriate procedures and legislation. [Commercial standards]

Programme Learning Outcome for year abroad programmes (where applicable)

For programmes which lead to the title 'with a Year Abroad' – typically involving an additional year – please provide either a) amended versions of some (at least one, but not necessarily all) of the standard PLOs listed above, showing how these are changed and enhanced by the additional year abroad or b) an additional PLO, if and only if it is not possible to capture a key ability developed by the year abroad by alteration of the standard PLOs.

n/a

Explanation of the choice of Programme Learning Outcomes

Please explain your rationale for choosing these PLOs in a statement that can be used for students (such as in a student handbook). Please include brief reference to:

i) Why the PLOs are considered ambitious or stretching?

These PLOs are ambitious because they show how we expect our graduates to develop in many different ways. We teach both the theory and the practical application of computer science, and expect students to understand both the science and the engineering sides of the discipline. It is not enough to learn just about the various technologies, but graduates need to understand that computer scientists have to act in a professional way, aware of the impact of their work on society. Our graduates can communicate with a range of stakeholders and we expect them to work effectively in multidisciplinary teams. It is not easy to achieve all of these outcomes, and our graduates are well-prepared for employment.

For Integrated Masters students, the additional PLO (PLO8) shows how we expect our graduates to be working at the cutting-edge of the discipline.

ii) The ways in which these outcomes are distinctive or particularly advantageous to the student:

The insistence that all our graduates need to have a basic grounding in both hardware and software is distinctive, and we are also keen to ensure that our graduates know the principles on which the discipline is based, rather than necessarily being experts in the latest technology (which may well have become outdated within a few years). Our graduates will be able to apply these principles to new technologies in the years ahead. Many of the option modules taken in later years reflect the particular research interests in the department, such as non-standard (quantum, evolutionary) computation or artificial intelligence or embedded systems.

PLO5 reflects the prominence given to team-working throughout the programme: we expect our graduates to be able to work in teams, as this is likely to be a vital skill in their later careers.

iii) How the programme learning outcomes develop students' digital literacy and will make appropriate use of technology-enhanced learning (such as lecture recordings, online resources, simulations, online assessment, 'flipped classrooms' etc)?

Graduates of this programme have been immersed in digital activities throughout, and we expect them to become not just consumers of digital resources but also creators.

Technology-enhanced learning: departmental policy is that lecture capture is the default, unless there are specific reasons not to, such as Intellectual Property. All modules have VLE sites where resources such as lecture notes and recordings are stored, along with any module-specific tools, simulations etc. Where appropriate, assessments are carried out online, with all open assessments submitted in digital form.

iv) How the PLOs support and enhance the students' employability (for example, opportunities for students to apply their learning in a real world setting)? The programme's employability objectives should be informed by the University's Employability Strategy:

http://www.york.ac.uk/about/departments/support-and-admin/careers/staff/

Support for employability starts from stage 1, where the SKIL module explicitly looks at CVs, skill requirements for particular jobs and desirable competences on graduation. Throughout the programmes, industrial case studies are used, and several modules (eg SEPR and GPIG) base teamwork projects on scenarios from industrial clients.

vi) How will students who need additional support for academic and transferable skills be identified and supported by the Department?

In stage 1, the SKIL module uses small tutorial groups for teaching. Since much of the module content concerns academic and transferable skills, these small groups are ideal for identifying those in need of extra support, which will be provided by the supervisor, with assistance from specialised central services where appropriate.

vii) How is teaching informed and led by research in the department/ centre/ University?

Although stages 1 and 2 contain a fairly standard core curriculum, the option modules available in stages 3 and 4 are often based on staff members' research specialisms. In addition, final-year ISMs are mostly proposed by supervisors and arise from current research interests.

Stage-level progression

Please complete the table below, to summarise students' progressive development towards the achievement of PLOs, in terms of the characteristics that you expect students to demonstrate at the end of each year. This summary may be particularly helpful to students and the programme team where there is a high proportion of option modules.

Note: it is not expected that a position statement is written for each PLO, but this can be done if preferred (please add information in the 'individual statement' boxes). For a statement that applies across all PLOs in the stage fill in the 'Global statement' box.

Stage 0 (if your programme has a Foundation year, use the toggles to the left to show the hidden rows)

Stage 1								
On progression from th	e first year (Stage 1), stu	dents will be able to:	p p	orinciples underlyii	ng computing; to unders sed in computer systems	ightforward problems; to tand the foundations of s; to work as an individud	electronics, systems arch	hitecture and
PLO 1	PLO 2	PLO 3	PLO 4		PLO 5	PLO 6	PLO 7	PLO 8

Individual statements								
Stage 2								
On progression from th	ne second year (Stage 2),	students will be able to:	apply th	e most app	propriate; to work effect		ns; to compare programn tand engineering tradeo ge of formats.	
PLO 1	PLO 2	PLO 3	PLO 4		PLO 5	PLO 6	PLO 7	PLO 8
Individual statements								
Stage 3								
(For Integrated Master students will be able to	s) On progression from t	he third year (Stage 3),						
			Global s	tatement				
PLO 1	PLO 2	PLO 3	PLO 4		PLO 5	PLO 6	PLO 7	PLO 8
Individual statements								
Programme Struc	ture							

Module Structure and Summative Assessment Map

Please complete the summary table below which shows the module structure and the pattern of summative assessment through the programme.

'Option module' can be used in place of a specific named option. If the programme requires students to select option modules from specific lists these lists should be provided in the next section.

From the drop-down select 'S' to indicate the start of the module, 'A' to indicate the timing of each distinct summative assessment point (eg. essay submission/ exam), and 'E' to indicate the end of the module (if the end of the module coincides with the summative assessment select 'EA'). It is not expected that each summative task will be listed where an overall module might be assessed cumulatively (for example weekly problem sheets).

If summative assessment by exams will be scheduled in the summer Common Assessment period (weeks 5-7) a single 'A' can be used within the shaded cells as it is understood that you will not know in which week of the CAP the examination will take place.

Stage 0 (if you have modules for Stage 0, use the toggles to the left to show the hidden rows)

Stage 1

Credits	N	lodule				Αι	utum	n Tei	rm							S	pring	Terr	n							Su	mme	r Ter	m			
	Code	Title	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
20	COM00003C	Human Aspects of Computer Science		S								A					EA															
20	COM00009C	Foundation in Electronics, Signals and Circuits												s										A		E			A			
15	COM00001C	Introduction to Computer Architecture		S										А												E			A			
20	COM00005C	Mathematical Foundations of Computer Science		s									A													E			A			
5	COM00008C	Skills, Knowledge and Independent Learning	s								A									E	Α											
10	COM00006C	Numerical Analysis												s												E			А			
20	COM00007C	Theory and Practice of Programming		s																						E	A		A			
10	COM00010C	Programming of Micro-controllers																			s					E	А					

-				1	1												1						1	1								
						L		_								Ш			ш													
Stage 2				-																									-			
Credits		lodule		1		Αι	ıtum	n Tei	rm							S	pring	Terr	1							Su	mme	r Ter	m			
	Code	Title	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
10	COM00013I	Implementation of Programming Languages		s								E	A																			
20	COM00014I	Systems												s											Е		Α	Α				
20	COM00005I	Principles of Programming Languages		s																E		A							А			
10	COM00002I	Computability and Complexity												s								E							Α			
20	COM00001I	Artificial Intelligence												s			Α								E				Α			
10	COM00009I	Vision and Graphics		s								E	Α																			
30	COM00012I	Embedded Systems Project		s																E		A			A							
	OR	OR																														
30	COM00008I	Software Engineering Project		s					A						A				A			E			A				Α			
																																Ш
Stage 3																																
Credits	l N	lodule				Αι	ıtum	n Tei	rm							S	pring	Terr	n							Su	mme	r Ter	m			
	Code	Title	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
40	COM00015H	BEng/BSc Project	s																						EA							
20	COM00001H	Analysable real- Time Systems		s									Α													E			Α			
20	СОМ00002Н	Computer Vision		S													Е												Α			
20	СОМ00003Н	Embedded Systems Design and Implementation		s							Α						Α					E				A						

20	СОМ00005Н	Computing by Graph Transformation	s				Α					E				A	
20	СОМ00006Н	Information & Coding Theory	S				Α				E					А	
20	СОМ00007Н	Introduction to Neural Computing and Applications	s									E	А				
20	СОМ00009Н	Multi-agent Interaction and Games	s									E				A	
20	COM00010H	Machine Learning and Applications	S								E			Α		А	
20	COM00012H	Programming: Correctness by Construction	s				Α					E				A	

Credits	Mo	dule				Αι	utum	n Te	rm							S	pring	Terr	n							Su	mme	r Ter	m			
	Code	Title	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10

Optional module lists

If the programme requires students to select option modules from specific lists these lists should be provided below. If you need more space, use the toggles on the left to reveal ten further hidden rows.

Option List A	Option List B	Option List C	Option List D	Option List E	Option List F	Option List G	Option List H

Management and Admissions Information

This document applies to students who commenced the programme(s) in:

2017/18

Interim awards available Interim awards available on undergraduate programmes (subject to programme regulations) will normally be: Certificate of Higher Education (Level 4/Certificate), Diploma of Higher Education (Level 5/Intermediate), Ordinary Degree and in the case of Integrated Masters the Bachelors with honours. Please specify any proposed exceptions to this norm.

Certificate of Higher Education Generic Level 4/Certificate

BSc Ordinary Degree Generic Level 6/Honours

BSc (Hons) Computer Systems Level 6/Honours

BSc (Hons) Computer Systems (with a year in industry) Level 6/Honours

Admissions Criteria

TYPICAL OFFERS
BEng/BSc: AAB/ABB
including Mathematics

Length and status of the programme(s) and mode(s) of study

Programme	Length (years)	Status (full- time/part-	Start dates/months (if applicable – for programmes			Mode		
		time) Please select	that have multiple intakes or start dates that differ from the usual academic year)	Face-to-face, campus	s-based	Distance learnii	ng	Other
BEng/BSc in Computer Science (and 'with a year in industry' variant)		Full-time	n/a	Please select Y/N	Yes	Please select Y/N	No	n/a

Language(s) of study

English.

Language(s) of assessment

English.

Programme accreditation by Professional, Statutory or Regulatory Bodies (PSRB)

Is the programme recognised or accredited by a PSRB

Please Select Y/N:	LYes	if No move to next Section if Yes complete the following questions
_		

Name of PSRB

Accredited with The Chartered Institute for IT (BCS) (to 2017 intake), Institution of Engineering and Technology (IET) (to 2016 intake) – Full CITP, Partial CEng or IEng status. Educational accreditation

requirements are built in to the programme - the BEng/BSc individual project cannot be compensated and compensation is limited to 20 credits per stage of study.

Are there any conditions on the approval/accreditation of the programme(s)/graduates (for example accreditation only for the full award and not any interim award)

Students who do not meet accreditation requirements for an award may still be eligible for a University York award (detailed on transfer section).

Additional Professional or Vocational Standards

Are there any additional requirements of accrediting bodies or PSRB or pre-requisite professional experience needed to study this programme?

Please Select Y/N:	No	if Yes, provide details
--------------------	----	-------------------------

(max 200 words)

University award regulations

The University's award and assessment regulations apply to all programmes: any exceptions that relate to this programme are approved by University Teaching Committee and are recorded at the end of this document.

Are students on the programme permitted to take elective modules?

(See: https://www.york.ac.uk/media/staffhome/learningandteaching/documents/policies/Framework%20for%20Programme%20Design%20-%20UG.pdf)

Please Select Y/N: Yes

Careers & Placements - 'With Placement Year' programmes

Students on all undergraduate and integrated masters programmes may apply to spend their third year on a work-based placement facilitated by Careers & Placements. Such students would return to their studies at Stage 3 in the following year, thus lengthening their programme by a year. Successful completion of the placement year and associated assessment allows this to be recognised in programme title, which is amended to include 'with Placement Year' (e.g. BA in XYZ with Placement Year'). The Placement Year also adds a Programme Learning Outcome, concerning employability. (See Careers & Placements for details).

	•		r' initiative. This is usually granted only for compelling reasons concerning generic so as to allow the same range of placements; or if the programme is less
Programme excluded from Placement Year? No If yes, wh	at are the reasons for t	his exemption:	
Study Abroad (including Year Abroad	as an additional y	year and replaceme	ent year)
	-	•	merica/ Asia/ Australia student exchange programme. Acceptance onto the count toward progression and classification.
Abroad		,	abroad activities? All such programmes must comply with the Policy on Study
https://www.york.ac.uk/staff/teaching/proc	edure/programmes/	design/	
Please Select Y/N: No			
Additional information			
Transfers out of or into the programme			
ii) Transfers into the programme will be possible (please select Y/N)	Yes		
Additional details:			
	final year projects can	not be compensated. Stu	o receive a degree that has IET accreditation only 20 credits can be compensated. udents who meet the criteria for a University of York award, but do not ms.
ii) Transfers out of the programme will be possible (please select Y/N)	Yes		
Additional details:			
	final year projects can	not be compensated. Stu	o receive a degree that has IET accreditation only 20 credits can be compensated. udents who meet the criteria for a University of York award, but do not ms.
Exceptions to University Award Regulations	approved by Univer	rsity Teaching Commit	tee
Exception Please detail any exceptions to University Award	Regulations approved	by UTC	Date approved
Date on which this programme information	was updated:		

11/08/2017

Please note:

The information above provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if they take full advantage of the learning opportunities that are provided.

Detailed information on the learning outcomes, content, delivery and assessment of modules can be found in the module descriptions.

The University reserves the right to modify this overview in unforeseen circumstances, or where the process of academic development, based on feedback from staff, students, external examiners or professional bodies, requires a change to be made. Students will be notified of any substantive changes at the first available opportunity.

Programme Map

Please note: the programme map below is in interim format pending the development of a University Programme Catalogue.

Programme Map: Module Contribution to Programme Learning Outcomes

This table maps the contribution to programme learning outcomes made by each module, in terms of the advance in understanding/ expertise acquired or reinforced in the module, the work by which students achieve this advance and the assessments that test it. This enables the programme rationale to be understood:

- · Reading the table vertically illustrates how the programme has been designed to deepen knowledge, concepts and skills progressively. It shows how the progressive achievement of PLOs is supported by formative work and evaluated by summative assessment. In turn this should help students to understand and articulate their development of transferable skills and to relate this to other resources, such as the Employability Tutorial and York Award;
- · Reading the table horizontally explains how the experience of a student at a particular time includes a balance of activities appropriate to that stage, through the design of modules.

ge	Module				Programme Lea	rning Outcomes			
		PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8
		Apply	Adapt to new	Design and build	Engineer	Make immediate	Communicate	Operate as	
		computational	technologies,	computer-based	solutions to	and effective	key information	responsible	
		thinking to	languages,	systems to serve	problems in	contributions as	about complex	Computer	
		problems they	paradigms,	the needs of	which	part of	computational	Science	
		encounter, using	terminologies	users, with the	computation	multidisciplinary	problems and	professionals, by	
			and models as	most	forms a	teams in	their solutions to	maintaining	
			they become	appropriate	significant part,	industry,	specialist	awareness of key	
		representation	available, being	combination of	by using skills	consultancy or	audiences and	legal and ethical	
		and abstraction,	confident to use	software and	from the whole	education, by	associated	issues,	
			advanced	hardware, by	breadth of	managing	stakeholders, in	appreciating	
		,	techniques and	applying the	Computer		a clear and	how computers	
			tools in their	theory and	Science across all	optimising	organised	and technology	
		·	practice.	practice of	parts of the	resources and	manner	can impact on	
		situations, and	[Adaptability]	programming	development	meeting	[Communication	society, and by	
		drawing on the		and software	lifecycle, with	deadlines, using]	continuing to	
		foundations of		engineering,	deeper skills in	experiences from		expand and	
		computer		while making	chosen areas.	team projects.		deepen their	
		science.		effective use of	[Engineering;	[Team working]		knowledge	
		[Computational		the variety of	Breadth and			through critical	
		thinking]		physical	depth]			engagement	
				implementations				with the	
				on which that				discipline.	
				software may be				[Professionalism]	
				running.					
				[Software and					

Stage 1	Foundation in Electronics, Signals and Circuits (FESC)	Progress towards PLO	able to formulate solutions, in high- level languages or in low-level programming models	rationalise about newly- encountered architectures	Students will be able to make informed choices in hardware-software codesign, and to select appropriate components to fulfil specific electronics requirements	real-world signals to digital systems, and to validate their correct operation	according to their complementary skills	solving complex problems	Students will begin to consider the importance of security in system design	
		By working on (and if applicable, assessed through)	by studying low- level programming and the functionality of code structures	by evaluating micro- architecture design choices	by writing low- level microcode and modifying a processor design, and through experimental investigation of component behaviours. Assessed by lab report, containing answers to questions posed in weekly lab scripts, and closed exam, assessing knowledge of processor hardware design and instruction set	by designing anlogue and digital circuits, and experiencing methods of testing. Assessed in lab report, describing how to design a piece of hardware to solve a specific problem, and in closed exam	partner during	by working with a partner during practical sessions	hardware which	

Stage 1	Human Aspects of Computer Science (HACS)	Progress towards PLO		Students can adapt to the need for scientific rigour when developing innovative systems	Students become able to apply the practice of software engineeering to design systems that serve the needs of users	Students become able to engineer solutions to problems of human needs in which digital systems form a significant part	Students can make effective contributions to team, including the allocation of work, coordination of activities and the need for	Students are able to communicate their work to software engineers, researchers and a broader audience in a range of styles suitable to	able to deepen their critical analysis of computer science as it(?) develops	
							individual responsibility	the audience	CICII WOIK	
		By working on (and if applicable, assessed through)		by conducting an experiment	by doing a user- centred design project	by doing a user- centred design project	by doing a user- centred design project and experiment as groups	by writing a report on an experiment and a report on a user- centred design project, and doing a trade-fair demonstration of a design	by designing an experiment, with concern for validity and participant involvement	
Stage 1	Introduction to Computer Architecture (ICAR)	Progress towards PLO	Students will develop skills in problem analysis and algorithm selection	Students can adapt to new instruction sets and future technologies	Students will be able to design simple computer architectures from basic building blocks (CPU, memory, peripheral devices, systems buses) and then assess their performance for a given problem	Students will learn that a system's processing performance is not solely determined by the algorithm selected or the hardware or the software, but the interaction of all three	Students will learn to work cooperatively in order to design, implement and test a program for a given problem	Students learn how to explain their thought processes in solving complex computational problems	Students will begin to consider the importance of security in system design	

		By working on (and if applicable, assessed through)	by solving programming problems on a variety of architectures. Assessed via open assessment on architecture design, and closed exam which tests theoretical aspects.	by writing assembly language programs on a wide range of processor architectures. Assessments require knowledge of a range of architectures.	by solving a series of exercises	by writing assembly language programs for different processor architectures	partner during	by working with a partner during practical sessions	software which	
Stage 1	Mathematical Foundations of Computer Science (MFCS)	Progress towards PLO	Students acquire skills in abstract representation, problem analysis and formal reasoning, and a practical grasp of foundational ideas and methods	terminologies, notations and			Students increase their capacity to appreciate and combine different views	Students learn how to explain their thinking about technical issue		
		By working on (and if applicable, assessed through)	by solving a series of problems involving concepts of discrete maths and formal languages and automata. Assessed by closed exam	by working with unfamiliar notations and layered ideas in discrete mathematics and formal languages and automata. Assessed by closed exam			by working in small groups to solve problems	by working in small groups to solve problems		
Stage 1	Numerical Analysis (NUMA)	Progress towards PLO	Students will be able to formulate problems using mathematical representations and solve them using numerical techniques	Students will understand how general techniques can be applied to study new problems and models		Students will understand how to apply standard libraries to solve a variety of numerical problems				

		By working on (and if applicable, assessed through)	by studying and applying a number of concepts from continuous maths. Assessed by closed exam	by applying abstract mathematical ideas to concrete problems		by implementing solutions to a series of numerical problems				
Stage 1	Programming of Micro-controllers (PROM)	Progress towards PLO	Students will learn to develop skills in problem analysis and algorithm selection		Students will learn to select the most appropriate solution for an identified system function	Students will understand how information is represented within a signal (eg amplitude or frequency components), and the effect of noise upon these	Students will learn to work cooperatively in order to produce a prototype solution	Students learn how to express their thought processes in solving complex computational problems		
		By working on (and if applicable, assessed through)	by designing, implementing and testing a software-based solution to a given problem		by assessing the suitability of both hardware and software solutions to a given problem. Open assessment where students demonstrate their solution to the given problem	by building analogue and digital circuits. Open assessment requires demonstration of working hardware and software	by working in small groups	by working in small groups		
Stage 1	Skills, Knowledge and Independent Learning (SKIL)			Students will be able to investigate a topic of their own choosing, and construct a critical analysis of a small number of items of relevant literature				different communication methods, and consider different possible audiences	Students start to learn about the wider (legal and ethical) implications of their discipline, and look ahead to what they hope to have achieved by graduation	

		By working on (and if applicable, assessed through)		by preparing a critical analysis of paper in the area, and using this as a basis for other communication activities			by engaging with a number of different communication methods (written report, oral presentation to tutorial group, poster) for a number of different audiences (peers, employer, academic report)	by analysing computing job adverts to discern the skills and competencies required for the post, and by drafting the CV they would like to have on graduation	
Stage 1	Theory and Practice of Programming (TPOP)	Progress towards PLO	(a) Students will become familiar with the theoretical tools used to understand algroithms and their complexity (b) Students will develop skills including problem solving, abstract representation, ability to select or develop an appropriate algorithm/data structure and to develop appropriate software testing strategies	(a) Students gain the ability to develop algorithms and data structures independent of platform (b) Students will be able to transfer skills learnt on one programming paradigm to another one	Students obtain the basic ability to build and maintain software systems, enabling larger software engineering projects	Students will appreciate the issues of how to communicate, argue and assess the proposed analysis of the proble, and the choice of design implementation			

			(a) by analysing well-known algorithms and data structures, in addition to solving a series of theoretical problems. Assessed by closed exam. (b) by implementing a series of solutions to problems (well known and new) in a specific programming language and paradigm. Assessed by timed software lab exam.	(a) by practising analysis of programs using different theoretical techniques (b) by implementing algorithms and data structures using two different languages from distinct paradigms. Assessed by timed software lab exam		by developing small pieces of software, and modifying code written by another programmer	by designing and implementing a solution to a larger problem in a small group of students over a period of two weeks		
Stage 2	Artificial Intelligence (ARIN)	Progress towards PLO	Students will be able to apply computational thinking to problems that can be solved using core Al techniques	Students will be able to transfer their skills to solving unseen problems	Students will be able to apply their knowledge of Al as part of a larger problem	Students gain exposure to wider applications of AI across engineering			

		By working on	by learning and	by working on a	by using	by working on a		
		(and if applicable,	practising the	range of	industrial-	variety of		
		assessed	key principles	problems that	strength tools for	problems across		
		through)	underlying	can be addressed	for specific	problem domains		
			search	using Al	problems in AI,			
			algorithms,	techniques.				
			machine learning	Assessed in lab-				
			algorithms and	based				
			approaches to	assessment and				
			and formalisms	closed exam.				
			for problem and					
			knowledge					
			representation.					
			Practical aspects					
			are assessed by					
			lab-based					
			asessment, and					
			theoretical					
			knowledge by					
			closed exam.					
Stage 2	Computability	Progress towards	Students will	Students will be	Students will			
	and Complexity	PLO	understand the	able to adapt to	appreciate the			
	(COCO)		difference	the properties of	relevance of			
			between	new languages	formal methods			
			solvable and	and paradigms	and be able to			
			unsolvable		apply them to			
			problems and be		reason about			
			able to analyse		software and			
			the		hardware			
			computational		systems			
			complexity of					
			algorithms					

		ı	I		-	1
	orking on by studying	by studying	by formally			
	if applicable, (semi-)decidable		analysing			
asses		and complexity in				
throu		a basic	termination and			
	computable	computational	complexity			
	functions and	model	properties of			
	the time and		Turing machines			
	space complexity					
	of Turing					
	machines. Closed					
	exam assesses					
	students'					
	familiarity with					
	the foundations					
	of CS, with					
	questions about					
	Turing machines					
	and Turing-					
	computable					
	functions, the					
	difference					
	between					
	solvable and					
	unsolvable					
	problems,					
	reductions					
	between					
	problems, time					
	and space					
	complexity of					
	decision					
	problems, and					
	complexity					
	classes such as					
	NP.					

Stage 2	Embedded	Progress towards	Students will gain	Students can	Students will be	Students will	Students will be	(a) Students will	Students will be	
_	Systems Project	PLO	the ability to	adapt to any	able to identify	understand, and	able to	be able to	able to consider	
	(EMPR)		rationalise,	hardware system	and evaluate	be able to	competently	demonstrate	and reflect on an	
			discuss, plan and	and any	possible design	navigate, an	participate in	their ability for	ethical or	
			implement	constraints	solutions for	engineering	team-working,	effective verbal	professional	
			software in an	encountered in a	complex system	lifecycle, from	practical	and written	issue relevant to	
			embedded	future situation,	requirements	concept through	managemnet of	communication	an embedded	
			system context	including gaining		to design,	team meetings,	with technical	computing	
				proficiency in		implementation,	task allocation	stakeholders	system they have	
				new		testing and	and monitoring,	(b) Students will	designed	
				programming		validation	progress	be able to		
				languages and			checking and	express opinions		
				hardware			technical	in a non-		
				interfaces, as			planning	technical way		
				they become				that is		
				available or				compatible with		
				relevant				non-technical		
								stakeholder		
								understanding		

		(and if applicable,	programming methods	by studying complex technical documentation, and the use of a new programming model	by designing a hardware and software codesign specification and implementation to suit a given complex problem. Assessment of ability to generate working embedded artefact assessed via demonstration, which covers both system performance and user interface.	by undertaking a complex problem, where software , algorithms and engineering principles are all required	solutions to complex problems, performing various team management	(a) by live practical demonstration and by written reporting (b) by reflecting on an ethical or professional aspect of their project work in the written report	by reflecting on an ethical or professional aspect of their project work	
							system solution, hence coordination			
							required by all.			
Stage 2	Implementation of Programming Languages (IMPL)		Students will develop and be able to recognise situations in which a pipeline architecture can be applied, including its associated techniques, to represent sentences of formal languages	Students will improve their adaptability to new programming languages and paradigms	Students will build understanding of the relationship between high and low level expression of computation	Students will improve their software engineering skills				

		By working on (and if applicable, assessed through)	algorithms for	new programming language paradigm, lazy functional	by exploring the relationship between source code and machine-level code. Assessed in closed exam	by developing all the components of a compiler		
Stage 2	Principles of Programming Languages (POPL)	Progress towards PLO	able to judge the most effective programming techniques for a particular computational requirement	Students will be able to adapt to changes in language fashions, and new technologies as they occur during their careers	Students will be able to make effective use of current and future programming language implementations		Students will be able to communicate the choice of principles and technical rationales	

			<u> </u>			
	by characterising	by	by implementing		by solving	
(and if applicable,	different	understanding	a series of simple		formative and	
assessed	programming	and applying the	programming		summative	
through)	principles,	fundamentals of	languages		problems in a	
	including	different	displaying the		variety of	
	concurrency.	programming	abstract		languages, and	
	Open	languages.	principles, and		writing concise	
	assessment	Assessed in open	solving similar		and focussed	
	requires	and closed	classic problems		explanations of	
		assessments: as	in several		the solutions	
	comparison of	PLO1	different			
	several		languages			
	contrasting					
	aspects of					
	sequential and					
	cncurrent					
	programming					
	languages, an					
	dhow these may					
	be applied to					
	specific					
	programming					
	problems. Also					
	requires					
	comparison of					
	instances of					
	principles given					
	within different					
	languages.					
	Closed exam					
	assesses					
	understanding of					
	principles across					
	a range of					
	languages					
	studied.					
	studieu.					

		1		1	1	1	1	1	1	
Stage 2	Software Engineering Project (SEPR)	Progress towards PLO	Students will be able to apply and empirically evaluate computational thinking in a software engineering context	Students will be able to adapt to new, unexpected and challenging software engineering problems	Students will be able to construct effective software with well-justified and articulated design decisions	Students will be able to carry out requirements analysis, design, verification, validation and change management	Students will be able to carry out project, risk, change and problem management, as well as planning, re-planning and negotiations, while meeting deadlines, and they will be able to apply team problem-solving techniques in	Students will be able to communicate with different stakeholders' different concerns; in addition they will be able to explain different facets of software and software engineering processes	Students will be able to apply and reason about different licensing and intellectual property protection mechanisms, and their relevance and value to software projects	
		By working on (and if applicable, assessed through)	by researching and designing specific and effective algorithms for a non-trivial software system	by researching, evaluating and implementing new models, lifecycles, methods and tools for software engineering, and applying them in new projects	by negotiating with stakeholders and exploring requirements and design trade-offs for a given software problem. Assessed in a series of open assessments.	by engineering and re- engineering a non-trivial software system. Assessed in a series of open assessments.	techniques in these tasks by working in teams, supported by facilitators, in a year-long project. Assessed in a series of open assessments and in closed exam.	by working with customers, presenting to peer groups, and writing different kinds of software engineering reports. Assessed in a series of open assessments.	by different	
Stage 2	Systems (SYST)	Progress towards PLO	Students will be able to apply the principles of resource management, networks, concurrency and databases	Students will be able to adapt to new systems programming approaches	Students will be able to build systems that exhibit required non-functional properties inclduing data consistency, process separation and (aspects of) security	Students develop engineering and problem-solving skills for buidling systems that can be applied to current and future industrial problems		Students will gain experience of communicating with stakeholders		

		By working on (and if applicable, assessed through)	by understanding these principles and the characteristics of these topics		by understanding how hardware supports an Operating System's provision of resource management. Students' understanding of OS's approach to management of resources within computer systems is assessed in	by solving realistic problems posed in laboratory sessions	by solving formative and summative problems, together with a varietry of laboratory problems, requiring writing concise and focussed explanations of the solutions	
				ciosea exam.	closed exam			
Stage 2	Vision and Graphics (VIGR)	Progress towards PLO	Students will be able to understand the requirements of visual information processing, and implement computational thinking into software for analysing images and for creating computer graphics	Students will be able to adapt to any programming language and library used for processing visual information and in computer graphics	Students will be able to process	Students will be able to develop algorithms and programs for processing images and for computer graphics	Students will be able to communicate with technical and non-technical people about the solutions for and suitable approaches to complex computational problems of visual information processing, in a clear and organised manner	

By working on	by applying	by learning the	by applying the	by engineering	by learning and	
(and if applicable,	•	principles of	visual	solutions to	understanding	
assessed	modelling of	visual infomation	information	problems of	how to represent	
through)	visual	analysis,	processing and	visual	and process	
	information,	including the	computer	information	visual	
	using specific	physics and	graphics theory	processing, using	information and	
	algorithms for	geometry of	into programs	physical sciences	its underlying	
	image analysis	scene	and testing them	understanding	principles	
	(computer	information in	in processing	and computing		
	vision) and for	visual systems	visual	skills. Assessed		
	creating images		representation	by closed exam,		
	(computer		data	which includes		
	graphics).			mathematical		
	Assessed by			exercise		
	closed exam,			questions to		
	which includes			show model or		
	mathematical			algorithm is		
	exercise			understood;		
	questions to			students		
	show model or			describe how an		
	algorithm is			algorithm would		
	understood;			behave in given		
	students			scenario, and		
	describe how an			what constraints		
	algorithm would			a particular		
	behave in given			approach might		
	scenario, and			impose. For a		
	what constraints			given image or		
	a particular			model, they		
	approach might			work backwards		
	impose. For a			by reasoning		
	given image or			what might have		
	model, they			produced it.		
	work backwards					
	by reasoning					
	what might have					
	produced it.					

C+ 2	Analusahia Basi	D	Carrelanda cuill le a	Carrala maa milli la a	Charles and a saill	Carrala nata costil la a	Ct. danta in anna		
Stage 3	Analysable Real-	Progress towards		Students will be	Students will	Students will be	Students increase		
	Time Systems	PLO	able to apply	able to adapt to	gain an	able to apply	their capacity to		
	(ARTS)		computational	new languages,	appreciation of	various	appreciate and		
			thinking in order	whether they are	the need to use	approaches to	combine		
			to abstract the	domain-specific	software	fault-tolerant	different views		
			relevant	or generic	engineering	computing			
			application		techniques that				
			timing		help to deal with				
			requirements		large and				
			and computing		complex systems				
			platform		(threads and				
			characteristics,		modules), and				
			so that		they will also				
			predictions can		appreciate the				
			be made as to		pros and cons of				
			whether real-		writing low-level				
			time		software in a				
			requirements		high-level				
			will be met when		language				
			the system is						
			exhibiting its						
			worst-case						
			timing behaviour						

	ı		1	ı			1		
		By working on	by doing		by producing				
		(and if applicable,	schedulability	how the	both high and	how to build	pairs to develop		
		assessed	analysis	computational	low level	resilient systems.	software		
		through)	problems using	model needed to	software	Exam might			
			response time	support		involve problems			
			analysis on	schedulability	a simple	using exception			
			various	analysis can be	embedded	handlers and			
			application use	supported in	system (the Ball	topics from			
				Ada, and by	Sorter) which	software fault			
			different	focussing on the	consists of	tolerance			
			execution	underlying	multiple threads				
			platforms.	principles that	of execution.				
			Assessed in	Ada supports.	Exam question				
			closed exam,	Assessed by	might require				
			where questions	closed exam,	sketch solutions				
			cover a range of	which might	in Ada for real-				
			topics where the	include definition	time related				
			characteristics of	of language-	application				
			an application	based real-time	problems				
			are given and the	abstractions,					
			properties of a	along with an					
			platform, and	evaluation of					
			students need to	their properties					
			determine	or a requirement					
			whether the	for an					
			system will meet	implementation					
			its real-time	of that					
				abstraction in					
			•	Ada.					
Stage 3	Computer Vision	Progress towards	Students	Students increase				Students develop	
Stage 3	(CVIS)	PLO	understand the	their capacity to				their critical	
	(CVIS)		complexities of	address problems				writing skills	
			algorithm design	in an				WITHING SKIIIS	
			in an	interdisciplinary					
			interdisciplinary						
			context	way, not necessarily					
			constrained by the underlying	confined to CS,					
			science of						
			human vision,						
			and can apply						
			this to real world						
			problems						

			By working on (and if applicable,	by studying the	by solving problems of				by undertaking a reading exercise	
- 1			assessed	underlying	algorithm design				and answering	
- 1			through)	computer vision	using models				critical questions	
- 1			(in ough)	algorithms, both	provided by a				about a selected	
- 1				those based on	diverse set of				scientific paper	l
- 1					disciplines				about a	
- 1				algorithmics and those based on	discipilities				computer vision	l
- 1									•	l
- 1				the underlying					algorithm	l
- 1				science (often						
- 1				physics,						
- 1				geometry or the						l
- 1				biology of						l
- 1				vision). Assessed						l
ļ				by closed exam						
- 1	Stage 3	Embedded	Progress towards	Students become	Students become	Students can	Students	Students learn to	Students develop	
- 1		Systems Design	PLO	able to evaluate	able to select	design system	develop	organise	their ability to	l
- 1		and		non-functional	tools and	models that	engineering and	themselves,	critically evaluate	l
- 1		Implementations		properties of	languages	guarantee end-	problem-solving	divide tasks,	their own work	l
- 1		(EMBS)		embedded	appropriate for a	use non-	skills that can be	show leadership	and current	l
- 1				systems (such as	particular	functional	applied within	and work	technologies	
- 1				timing or energy)	embedded	requirements are	industry	effectively as a		l
- 1				with the	system	met and can		team, while		l
				appropriate level		implement those		under time		
				of accuracy		models on		pressure		
						physical				
- 1						prototypes				l

By working on b	by understanding	by studying	by using	by solving	by taking part in	by writing	
(and if applicable, t	the theory of	different	different	realistic	a team-based	reports,	
assessed s	such systems,	specification	hardware and	engineering	technical design	performing	
through) ii	ncluding	languages, design	software	problems across	challenge	demonstrations	
s	successive	automation tools	platforms. A	multiple		and explaining	
r	refinements of	and evaluation	series of open	application		their solutions	
a	abstract models	frameworks	assessments	domains. A			
	of applications to		based on	series of open			
	nardware		challenging	assessments, in			
p	olatforms		design problems,	which students			
			covering	are required to			
			embedded	present reports			
			software,	describing their			
			embedded	chosen			
			hardware, their	engineering			
			interfaces and	methodology			
			communicatin	and process, and			
			infrastructure.	justifying that			
			Students are	choice with			
			required to	regards to the			
			present and	application			
			demonstrate	domains covered			
			suitable	by the			
			hardware and	assessment (eg			
			software	wireless sensor			
			solutions, as well				
			as reports	processing)			
			justifying their				
			design decisions,				
			presenting				
			quantitative and				
			qualitative				
			evidence of				
			meeting				
			requirements.				

Stage 3	Computing by	Progress towards	Students will	Students will be	Students will be			
	Graph	PLO	develop an	able to adapt to	able to write			
	Transformation		appreciation for	the properties of	graph problems			
	(GRAT)		problem solving	new domain-	for solving			
	, ,		and formal	specific	problems in			
			reasoning in	languages	graph-like			
			rule-based		domains and			
			systems and		reason about			
			domain-specific		program			
			languages		correctness and			
					complexity			
		By working on	by studying the	by studying the	by developing			
		(and if applicable,	properties of	properties of a	small rule-based			
		assessed	rule-based	rule-based and	programs for			
		through)	systems in the	non-	manipulating			
			domain of	deterministic	graph structures			
			graphs, and the	domain-specific	and analysing the			
			semantics and	language	properties of			
			use of a non-		these programs			
			deterministic					
			programming					
			language on					
			graphs. Assessed					
			by closed exam,					
			which assesses					
			how well					
			students are able					
			to think computationally,					
			by requiring					
			reasoning in a					
			non-standard					
			model of					
			computation					
			based on graph-					
			transformation					
			rules and asking					
			students to solve					
			graph problems					
			by rule-based					
			reasoning.					

Stage 3	Information and Coding Theory (ICOT)	PLO	Students become able to apply computational thinking to modern issues associated with data storage and transmission	able to adapt and extend their knowledge to other mathematical models, such as quantum information and computation, and network design		Students become able to protect information from loss and to protect it from other adverse effects associated with limited and incomplete forms of transmission	Students become able to communicate with both mathematicians and computer scientists	able to understand the mathematical principles and difficulties which are behind the protection of confidential and private information	
		By working on (and if applicable, assessed through)	by analysing and applying methods and algorithms for data compression. Assessed in closed exam	by studying and understanding the fundamental notions of information, coding and network theory		by applying the principles of error correction and channel coding	by learning the most basic definitions and theorems in information theory and also applying these tools to practical examples	by learning and practising the basic tools of cryptography	
Stage 3	Introduction to Neural Computing and Applications (INCA)	Progress towards PLO	Students will be able to apply computational thinking to develop solutions to a broad range of complex problems	Students will be able to adapt more readily to new technologies and paradigms	Students will be able to select the appropriate tools and paradigms to solve specific problems		Students will be able to communicate with technical stakeholders about complex issues		

		By working on (and if applicable, assessed through)	by implementing and using different neuron models and neural network architectures	by applying different types of neural networks to a range of real problems. Open assessment (report) requires demonstration that students have assimilated different approaches to computation represented by different neural networks to discus application to different problems	training		by working in small groups to analyse problems, and by giving presentations about solutions	
Stage 3	Multi-Agent Interaction and Games (MAIG)	Progress towards PLO	Students will be able to define optimal individual and group behaviours and the impact of interaction environment designs on these	Students will be able to solve practical problems by applying abstract interaction models and to perform a precise analysis of complex multiagent situations				

		By working on (and if applicable, assessed through)	by modelling and analyzing agent interactions as mathematical games. Assessed in closed exam: students are given agent interaction scenarios and asked to formulate and solve them mathematically, using techniques presented in	by working with mathematical abstractions and applying them to problem solving				
			lectures					
Stage 3	Machine Learning and Applications (MLAP)	Progress towards PLO	Students will be able to apply computational thinking to develop Bayesian learning algorithms for complex learning problems	Students wll be able to adapt existing machine learning algorithms to new domains and new problems	Students will be able to develop their own software solutions to novel data analysis problems	Students will be able to analyse and interpret different types of data across disciplines	Students gain experience in communicating their analysis and conclusions oin moderately complex datasets	

	ı				ı	1	1	<u>-</u> 1	
		By working on	by learning the	by		by performing	by writing a		
		(and if applicable,	statistical and	understanding	a range of	predictive	coursework		
		assessed	probabilistic	how a range of	different	analysis tasks on	report on specific		
		through)	principles	data analysis	machine learning		problem		
			underlying	problems can be	algorithms. Open	coming from	domains. Open		
			Bayesian	solved. Open	assessment on	different	assessment on		
			machine	assessment on	applying machine	application	applying machine		
			learning. Open	applying	learning to solve	domains. Open	learning to solve		
			assessment on	machine learning	problems on	assessment on	problems on		
			applying	to solve	given	applying machine	given		
			machine learning	problems on	dataset/domain:	learning to solve	dataset/domain:		
			to solve	given	requires	problems on	requires		
			problems on	dataset/domain:	development of	given	development of		
			given	requires	mathematical	dataset/domain:	mathematical		
			dataset/domain:	development of	model, its	requires	model, its		
			requires	mathematical	implementation	development of	implementation		
			development of	model, its	and evaluation,	mathematical	and evaluation,		
			mathematical	implementation	and reporting.	model, its	and reporting.		
			model, its	and evaluation,		implementation			
			implementation	and reporting.		and evaluation,			
			and evaluation,			and reporting.			
			and reporting.						
			Closed exam						
			assesses						
			machine learning						
			theory.						
Ct 2	D	Due succes to consult	_	Charles and a smill be a	Ch data ill	Chda.ahaill	Charles and a saill		
Stage 3	Programming	"	Students will	Students will be	Students will	Students will	Students will		
	Correctness by	PLO	become able to	able to handle a	understand how	understand	have an		
	Construction		carry out	variety of	to specify and	programming as	awareness of the		
	(PCOC)		problem analysis	modelling and	develop	part of an	issues of		
			using the	analysis	alternative	engineering	ambiguity and		
			mathematical	techniques to	software designs	discipline with	incompleteness		
			foundations of	deal with with	and meet the	solid	in informal		
			computer	systems	users' needs for	mathematical	descriptions		
			science	descriptions	reliability	foundations			
		By working on	by writing formal	by learning to	by learning	by learning the	by writing formal		
		(and if applicable,	models using a	write models	formal	mathematical	descriptions of		
		assessed	data modelling	using	characterisations	principles of	systems		
		through)	language and a	mathematical	of the notion of	correctness			
			process algebra.	notations.	correctness				
			Assessed by	Assessed by					
			closed exam	closed exam					
			l				l		

Stage 3	BEng/BSC Project, with CS Writing (PRBX/PCSW)	Progress towards PLO	how to apply	synthesise and apply	Students learn how to apply engineering principles to deliver working systems, on time	Students learn how to engineer solutions to problems in which computation forms a significant part	Students learn how to explain and critically evaluate both existing approaches to computational problems and their own approaches to such problems	Students learn to recognise ethical issues, including academic integrity, and address them appropriately	
		(and if applicable, assessed through)	of requirements, then formulating a more exact specification and overall method of solution	problem in their project that goes beyond other modules, requiring independent literature search and critical review. Assessed in the project	appropriate combination of software and hardware to meet project requirements.	by undertaking an engineering project, including design, implementation and evaluation. Assessed in project report and presentation. Each chooses a project topic, so "deeper skills in chosen areas" are assessed.	by writing a substantial project report, including a literature review, giving a presentation and evaluating fellow-students' presentations. Assessed by report and presentation, which are written for 'informed computer scientist'.	by explicitly considering such issues, both when conducting project work and when writing their report. Assessed by a required 'Ethics Statement' in the project report, which considers the ethical impact of the project.	